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Abstract

These notes are for my talk at the Locally Trivial Seminar on January 28, 2025.
We will introduce Nonabelian Hodge Theory, especially for smooth (not necessarily
proper!) curves over C and look at some examples of local systems.

1 Introduction

Let X be a smooth proper curve over C, and D a collection of points on X. Let
π : Y → X \ D be a smooth proper family (i.e., a smooth proper submersion) of
complex varieties. Then, we can look at the derived pushforward Riπ∗C on X \D. This
is a local system on X \D, and corresponds to one of the “special” representations of
π(X \D, p) where p ∈ X \D is a distinguished point. For some x ∈ X, let Yx = f−1(x).

Given some Riπ∗C, we obtain a representation of π1(X \ D, p) by transporting
classes in the fiber (Riπ∗C)p ∼= H i(Yp,C) along classes γ ∈ π1(X \ D, p). This gives
us a representation ρp : π1(X \ D, p) → GL(H i(Yp,C)). Recall that when X \ D is
connected, the fundamental group is independent of our choice of basepoint p, up to
conjugating by the choice of a homotopy class of a path. This is realized by conjugating
our representation, meaning we get an isomorphic representation.

More generally, given any rank n complex local system V, we can get an isomor-
phism class of an n-dimensional representation π1(X \D) → GLn(C). This operation
is invertible, and hence we may view the moduli space of rank n local systems as the
same as the moduli space of rank n representations of π1(X \ D). Let MB be this
moduli space of representations. Our goal is to study the points in MB corresponding
to the representations obtained from some Riπ∗C. To that end, we make the following
definition

Definition 1.1. A local system V on X \D is geometric/motivic/of geometric origin
if there is a Zariski dense open set U ⊆ X \D and a smooth proper map f : Y → U
such that V|U is isomorphic to a subquotient of Rif∗C.

2 Hodge theory and non-abelian cohomology

It turns out that studying motivic local systems is not so easy. There are some easy
necessary on a local system V for it to be motivic. First, we require that V actually
is a local system defined over Z. This is because if V comes from the cohomology of
a complex variety, it must have an integral structure due to the existence of singular
cohomology. The second is that V must come from a variation of Hodge structure.
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A sufficient condition for motivicity is rigidity. If V is motivic, it is rigid. This is
recent work of Joakim Faergeman and uses the Geometric Langlands Correspondence.

Definition 2.1. A variation of Hodge structure (V, F •,∇) on X \D is a holomorphic
flat vector bundle on X\D with a filtration satisfying Griffiths transversality: ∇(F p) ⊆
F p−1⊗Ω1

X(logD). A polarization is a flat Hermitian form ψ so that (−1)p is positive on
F p/F p+1. A polarizable variation of Hodge structure is a variation with a polarization.

Definition 2.1 is a fake definition, but it is good enough for our purposes. The
filtration F • is called the Hodge filtration, and at each x ∈ X\D we get a filtration (F •

x )
of the fiber Vx. In this way, the Hodge filtration on ordinary cohomology H i(Yx,C) =
⊕p+q=iH

p,q(X,C) is mimicked.

Conjecture 2.2. The motivic local systems are precisely the integral polarizable vari-
ation of Hodge structures.

Currently, our picture looks like this.

{motivic local systems} ⊆ {Z−VHS} ⊆ {C−VHS} ⊆ MB.

It turns out, there are tools to study C-VHS. For ordinary cohomology, if X is a
compact Kähler manifold we know that Hom(π1(X),C) = H1

Betti(X,C) ∼= H1
dR(X,C) ∼=

H1
Dol(X,C) = H0(X,Ω1

X) ⊕ H1(X,OX). That is, a singular cohomology class is the
same as the data of a globally defined 1-form and gluing data for a line bundle.

We note that by definition

MB := Hom(π1(X),GLn(C))//conjugation.

In this way, MB is a “non-abelian” Betti cohomology group forX. This is diffeomorphic
to MDol, the moduli space of stable Higgs bundles on X of degree 0, which is the “non-
abelian” Dolbeault cohomology group for X.

3 Parabolic Higgs Bundles

Let X be a smooth proper curve and D = {x1, . . . , xr} a collection of points on X. We
let M = MB(C1, . . . , Cr) be a relative character variety where (C1, . . . , Cr) is a collec-
tion of conjugacy classes in GLn(C) and MB(C1, . . . , Cr) is the space of representations
ρ such that for a simple closed loop γi around xi, we require that ρ(γi) ∈ Ci. The idea
is that instead of studying MB as a whole (or the C-VHS inside it), we can study it
one bit at a time. Depending on what (C1, . . . , Cr) is M may be empty or nonempty.

We restrict to the case where the the C1, . . . , Cr ⊆ U(n). This is not a real restric-
tion because the C-VHS must preserve a polarization and hence underly representations
satisfying this unitary local monodromy data.

Definition 3.1. A parabolic Higgs bundle (E∗, θ) on a pair (X,D) (where D = x1 +
· · ·+ xr) is a bundle E on X along with the following data:

1. a sequence of real numbers 0 ≤ α1
i < · · · < αni+1

i < 1 at each xi
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2. a strictly decreasing flag of the fiber Exi = E1
i ⊃ E2

i ⊃ · · · ⊃ Eni
i ⊃ Eni+1

i = 0.

3. A map θ : E → E⊗Ω1
X(logD) so that at each xi, θ(E

j
i ) ⊆ Ej+1

i ⊗ (Ω1
X(logD))xi .

The parabolic Higgs bundles are related to representations inMB(C1, . . . , Cr) in the
following way: given someAi ∈ Ci, it is diagonalizable with eigenvalues (e2πiθ1 , . . . e2πiθn).
After removing redundant θi’s and ordering them in increasing order, we get our
parabolic weights. The flags are obtained by summing the generalized eigenspaces
to each of the e2πiθi ’s.

Definition 3.2. We define the parabolic degree of a parabolic Higgs bundle to be

par-degE∗ = deg(E) +

r

i=1

ni

j=1

αj
i · dim(Ej

i /E
j+1
i )

and we call the quantity µ∗(E∗) = par-deg(E∗)/ rankE to be the slope of E∗.

Definition 3.3. We say that a parabolic Higgs bundle (E∗, θ) is stable (resp. semistable)
if for all sub-Higgs bundles (the subbundles F ⊆ E satisfying θ(F ) ⊆ F ⊗Ω1

X(logD)),
we have that µ∗(F∗) < µ∗(E∗) (resp. ≤).

Let (C1, . . . , Cr) be some local monodromy data and {αj
i} the parabolic weights as-

sociated to the data. LetMDol({αj
i}) be the moduli space of semi-stable parabolic Higgs

bundles of parabolic degree 0. Note that there is a natural Gm-action on MDol({αj
i})

given by scaling the Higgs field t · (E∗, θ) → (E∗, tθ).

Theorem 3.4 - (Simpson). There is a diffeomorphismMB(C1, . . . , Cr) ∼= MDol({αj
i}).

Why the correspondence works (or indeed what the actual map is!) is not so
important for our purposes. Instead, I will detail certain important objects on each
side and how they relate to eachother.

MB(C1, . . . , Cr) MDol({αj
i})

C−VHS Graded (E∗, θ) with weight 1 θ Gm − fixed points

Unitary reps Z−VHS ??? {(E∗, 0)}

motivic local systems ???

∼=

∼= equal

∼=
∼=

=?

∼=

Notably, the integral local systems and the motivic local systems do not have a
good description. We are able to tell quite easily when something is a variation of
Hodge structure, but there is no known current technique to tell which subring R ⊆ C
a Higgs bundle is defined over (in the sense that the corresponding representating is
defined over R). Conversely, given a representation ρ we can tell what ρ is defined over
but it is not easy to see when it underlies a variation.

3



4 Examples

To write down a C-VHS, we just need to write down a parabolic graded Higgs bundle
with Higgs field of weight one.

Example 4.1. Let 1, 2, 3 > 0 be very small numbers. Then, consider the parabolic
Higgs bundle with the following weights

D O O(−1) O(−1) O(−1)

x1
1
4 − 1

1
4 − 1

2
1
4 + 1

2
1
4 + 1

x2
1
4 − 2

1
4 − 2

2
1
4 + 2

2
1
4 + 2

x3
1
4 − 2

1
4 + 22

1
4 − 22

1
4 + 2

Here, our Higgs field goes from left to right. By choosing our Higgs fields generically,
we note that our sub-Higgs bundles are the obvious ones. Then, checking stability is
just a numerical condition which is obvious because 3/4 ≪ 1.

Example 4.2. Consider the parabolic Higgs bundle

point O(−1)⊕ O(−1) = S O(−1) = Q

x1
1
3 , 97

300
103
300

x2
9
20 , 120

1
2

x3
17
50 ,1320

1
100

where our flags are chosen generically, as is our Higgs field. The sub-Higgs bundles we
need to check stability for are Q and L ⊕ θ(L) for all subbundles L ⊆ S. Certainly
µ∗(Q∗) < 0. Then, any destabilizing subbundle L ⊆ Q necessarily must be of degree
−1. But note that because our flags were chosen generically, so if L takes the largest
weight at one point it must take the smallest weights at the other two points (because
the inclusion map L ↩→ S is constant). Then, stability is guaranteed.
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