# Special Representations of Surface Groups

#### Charlie Wu

#### Abstract

These notes are for my talk at the Locally Trivial Seminar on January 28, 2025. We will introduce Nonabelian Hodge Theory, especially for smooth (not necessarily proper!) curves over  $\mathbb{C}$  and look at some examples of local systems.

#### 1 Introduction

Let X be a smooth proper curve over  $\mathbb{C}$ , and D a collection of points on X. Let  $\pi : Y \to X \setminus D$  be a smooth proper family (i.e., a smooth proper submersion) of complex varieties. Then, we can look at the derived pushforward  $R^i \pi_* \underline{\mathbb{C}}$  on  $X \setminus D$ . This is a local system on  $X \setminus D$ , and corresponds to one of the "special" representations of  $\pi(X \setminus D, p)$  where  $p \in X \setminus D$  is a distinguished point. For some  $x \in X$ , let  $Y_x = f^{-1}(x)$ .

Given some  $R^i \pi_* \underline{\mathbb{C}}$ , we obtain a representation of  $\pi_1(X \setminus D, p)$  by transporting classes in the fiber  $(R^i \pi_* \underline{\mathbb{C}})_p \cong H^i(Y_p, \mathbb{C})$  along classes  $\gamma \in \pi_1(X \setminus D, p)$ . This gives us a representation  $\rho_p : \pi_1(X \setminus D, p) \to \operatorname{GL}(H^i(Y_p, \mathbb{C}))$ . Recall that when  $X \setminus D$  is connected, the fundamental group is independent of our choice of basepoint p, up to conjugating by the choice of a homotopy class of a path. This is realized by conjugating our representation, meaning we get an isomorphic representation.

More generally, given any rank n complex local system  $\mathbb{V}$ , we can get an isomorphism class of an n-dimensional representation  $\pi_1(X \setminus D) \to \operatorname{GL}_n(\mathbb{C})$ . This operation is invertible, and hence we may view the moduli space of rank n local systems as the same as the moduli space of rank n representations of  $\pi_1(X \setminus D)$ . Let  $M_B$  be this moduli space of representations. Our goal is to study the points in  $M_B$  corresponding to the representations obtained from some  $R^i \pi_* \underline{\mathbb{C}}$ . To that end, we make the following definition

**Definition 1.1.** A local system  $\mathbb{V}$  on  $X \setminus D$  is geometric/motivic/of geometric origin if there is a Zariski dense open set  $U \subseteq X \setminus D$  and a smooth proper map  $f: Y \to U$ such that  $\mathbb{V}|_U$  is isomorphic to a subquotient of  $R^i f_* \mathbb{C}$ .

### 2 Hodge theory and non-abelian cohomology

It turns out that studying motivic local systems is not so easy. There are some easy necessary on a local system  $\mathbb{V}$  for it to be motivic. First, we require that  $\mathbb{V}$  actually is a local system defined over  $\mathbb{Z}$ . This is because if  $\mathbb{V}$  comes from the cohomology of a complex variety, it must have an integral structure due to the existence of singular cohomology. The second is that  $\mathbb{V}$  must come from a variation of Hodge structure.

A sufficient condition for motivicity is rigidity. If  $\mathbb{V}$  is motivic, it is rigid. This is recent work of Joakim Faergeman and uses the Geometric Langlands Correspondence.

**Definition 2.1.** A variation of Hodge structure  $(V, F^{\bullet}, \nabla)$  on  $X \setminus D$  is a holomorphic flat vector bundle on  $X \setminus D$  with a filtration satisfying Griffiths transversality:  $\nabla(F^p) \subseteq F^{p-1} \otimes \Omega^1_X(\log D)$ . A polarization is a flat Hermitian form  $\psi$  so that  $(-1)^p$  is positive on  $F^p/F^{p+1}$ . A polarizable variation of Hodge structure is a variation with a polarization.

Definition 2.1 is a fake definition, but it is good enough for our purposes. The filtration  $F^{\bullet}$  is called the Hodge filtration, and at each  $x \in X \setminus D$  we get a filtration  $(F_x^{\bullet})$  of the fiber  $V_x$ . In this way, the Hodge filtration on ordinary cohomology  $H^i(Y_x, \mathbb{C}) = \bigoplus_{p+q=i} H^{p,q}(X, \mathbb{C})$  is mimicked.

**Conjecture 2.2.** The motivic local systems are precisely the integral polarizable variation of Hodge structures.

Currently, our picture looks like this.

{motivic local systems}  $\subseteq \{\mathbb{Z} - \text{VHS}\} \subseteq \{\mathbb{C} - \text{VHS}\} \subseteq M_B.$ 

It turns out, there are tools to study  $\mathbb{C}$ -VHS. For ordinary cohomology, if X is a compact Kähler manifold we know that  $\operatorname{Hom}(\pi_1(X), \mathbb{C}) = H^1_{\operatorname{Betti}}(X, \mathbb{C}) \cong H^1_{\operatorname{dR}}(X, \mathbb{C}) \cong H^1_{\operatorname{Dol}}(X, \mathbb{C}) = H^0(X, \Omega^1_X) \oplus H^1(X, \mathscr{O}_X)$ . That is, a singular cohomology class is the same as the data of a globally defined 1-form and gluing data for a line bundle.

We note that by definition

$$M_B := \operatorname{Hom}(\pi_1(X), \operatorname{GL}_n(\mathbb{C})) / / \operatorname{conjugation}.$$

In this way,  $M_B$  is a "non-abelian" Betti cohomology group for X. This is diffeomorphic to  $M_{\text{Dol}}$ , the moduli space of stable Higgs bundles on X of degree 0, which is the "non-abelian" Dolbeault cohomology group for X.

#### **3** Parabolic Higgs Bundles

Let X be a smooth proper curve and  $D = \{x_1, \ldots, x_r\}$  a collection of points on X. We let  $M = M_B(C_1, \ldots, C_r)$  be a relative character variety where  $(C_1, \ldots, C_r)$  is a collection of conjugacy classes in  $\operatorname{GL}_n(\mathbb{C})$  and  $M_B(C_1, \ldots, C_r)$  is the space of representations  $\rho$  such that for a simple closed loop  $\gamma_i$  around  $x_i$ , we require that  $\rho(\gamma_i) \in C_i$ . The idea is that instead of studying  $M_B$  as a whole (or the  $\mathbb{C}$ -VHS inside it), we can study it one bit at a time. Depending on what  $(C_1, \ldots, C_r)$  is M may be empty or nonempty.

We restrict to the case where the the  $C_1, \ldots, C_r \subseteq U(n)$ . This is not a real restriction because the C-VHS must preserve a polarization and hence underly representations satisfying this unitary local monodromy data.

**Definition 3.1.** A parabolic Higgs bundle  $(E_*, \theta)$  on a pair (X, D) (where  $D = x_1 + \cdots + x_r$ ) is a bundle E on X along with the following data:

1. a sequence of real numbers  $0 \le \alpha_i^1 < \cdots < \alpha_i^{n_i+1} < 1$  at each  $x_i$ 

- 2. a strictly decreasing flag of the fiber  $E_{x_i} = E_i^1 \supset E_i^2 \supset \cdots \supset E_i^{n_i} \supset E_i^{n_i+1} = 0.$
- 3. A map  $\theta: E \to E \otimes \Omega^1_X(\log D)$  so that at each  $x_i, \theta(E_i^j) \subseteq E_i^{j+1} \otimes (\Omega^1_X(\log D))_{x_i}$ .

The parabolic Higgs bundles are related to representations in  $M_B(C_1, \ldots, C_r)$  in the following way: given some  $A_i \in C_i$ , it is diagonalizable with eigenvalues  $(e^{2\pi i\theta_1}, \ldots, e^{2\pi i\theta_n})$ . After removing redundant  $\theta_i$ 's and ordering them in increasing order, we get our parabolic weights. The flags are obtained by summing the generalized eigenspaces to each of the  $e^{2\pi i\theta_i}$ 's.

Definition 3.2. We define the parabolic degree of a parabolic Higgs bundle to be

$$\operatorname{par-deg} E_* = \operatorname{deg}(E) + \sum_{i=1}^r \sum_{j=1}^{n_i} \alpha_i^j \cdot \operatorname{dim}(E_i^j / E_i^{j+1})$$

and we call the quantity  $\mu_*(E_*) = \operatorname{par-deg}(E_*)/\operatorname{rank} E$  to be the slope of  $E_*$ .

**Definition 3.3.** We say that a parabolic Higgs bundle  $(E_*, \theta)$  is stable (resp. semistable) if for all sub-Higgs bundles (the subbundles  $F \subseteq E$  satisfying  $\theta(F) \subseteq F \otimes \Omega^1_X(\log D)$ ), we have that  $\mu_*(F_*) < \mu_*(E_*)$  (resp.  $\leq$ ).

Let  $(C_1, \ldots, C_r)$  be some local monodromy data and  $\{\alpha_i^j\}$  the parabolic weights associated to the data. Let  $M_{\text{Dol}}(\{\alpha_i^j\})$  be the moduli space of semi-stable parabolic Higgs bundles of parabolic degree 0. Note that there is a natural  $\mathbb{G}_m$ -action on  $M_{\text{Dol}}(\{\alpha_i^j\})$  given by scaling the Higgs field  $t \cdot (E_*, \theta) \mapsto (E_*, t\theta)$ .

**Theorem 3.4 - (Simpson).** There is a diffeomorphism  $M_B(C_1, \ldots, C_r) \cong M_{\text{Dol}}(\{\alpha_i^j\})$ .

Why the correspondence works (or indeed what the actual map is!) is not so important for our purposes. Instead, I will detail certain important objects on each side and how they relate to each other.



Notably, the integral local systems and the motivic local systems do not have a good description. We are able to tell quite easily when something is a variation of Hodge structure, but there is no known current technique to tell which subring  $R \subseteq \mathbb{C}$  a Higgs bundle is defined over (in the sense that the corresponding representating is defined over R). Conversely, given a representation  $\rho$  we can tell what  $\rho$  is defined over but it is not easy to see when it underlies a variation.

## 4 Examples

To write down a  $\mathbb{C}$ -VHS, we just need to write down a parabolic graded Higgs bundle with Higgs field of weight one.

**Example 4.1.** Let  $\epsilon_1, \epsilon_2, \epsilon_3 > 0$  be very small numbers. Then, consider the parabolic Higgs bundle with the following weights

| D     | Ø                          | $\mathscr{O}(-1)$                    | $\mathscr{O}(-1)$                    | $\mathscr{O}(-1)$          |
|-------|----------------------------|--------------------------------------|--------------------------------------|----------------------------|
| $x_1$ | $\frac{1}{4} - \epsilon_1$ | $\frac{1}{4} - \frac{\epsilon_1}{2}$ | $\frac{1}{4} + \frac{\epsilon_1}{2}$ | $\frac{1}{4} + \epsilon_1$ |
| $x_2$ | $\frac{1}{4} - \epsilon_2$ | $\frac{1}{4} - \frac{\epsilon_2}{2}$ | $\frac{1}{4} + \frac{\epsilon_2}{2}$ | $\frac{1}{4} + \epsilon_2$ |
| $x_3$ | $\frac{1}{4} - \epsilon_2$ | $\frac{1}{4} + 2\epsilon_2$          | $\frac{1}{4} - 2\epsilon_2$          | $\frac{1}{4} + \epsilon_2$ |

Here, our Higgs field goes from left to right. By choosing our Higgs fields generically, we note that our sub-Higgs bundles are the obvious ones. Then, checking stability is just a numerical condition which is obvious because  $3/4 \ll 1$ .

**Example 4.2.** Consider the parabolic Higgs bundle

| point | $\mathscr{O}(-1) \oplus \mathscr{O}(-1) = S$ | $\mathscr{O}(-1) = Q$ |
|-------|----------------------------------------------|-----------------------|
| $x_1$ | $\frac{1}{3}$ , $\frac{97}{300}$             | $\frac{103}{300}$     |
| $x_2$ | $\frac{9}{20}$ , $\frac{1}{20}$              | $\frac{1}{2}$         |
| $x_3$ | $\frac{17}{50}$ , $\frac{13}{20}$            | $\frac{1}{100}$       |

where our flags are chosen generically, as is our Higgs field. The sub-Higgs bundles we need to check stability for are Q and  $L \oplus \theta(L)$  for all subbundles  $L \subseteq S$ . Certainly  $\mu_*(Q_*) < 0$ . Then, any destabilizing subbundle  $L \subseteq Q$  necessarily must be of degree -1. But note that because our flags were chosen generically, so if L takes the largest weight at one point it must take the smallest weights at the other two points (because the inclusion map  $L \hookrightarrow S$  is constant). Then, stability is guaranteed.