BAD SIMPLEX ARGUMENTS

MATTHEW SCALAMANDRE

These are notes for an expository talk at the Locally Trivial Seminar.

1. SIMPLICIAL COMPLEXES

We give two definitions of these objects:

- **Definitions 1.1.** (Combinatorial Model): A simplicial complex X is a set V_X of vertices, together with a set $S_X \subseteq \mathcal{P}_{fin}(V_X)$ which contains all singletons, and is closed under subsets.
 - (Topological Model): A simplicial complex is a CW-complex where D^i is modelled on Δ^i , and where the only allowed attaching maps are the inclusions $\partial \Delta^i \hookrightarrow \Delta^i$. Further, we require that every simplex is uniquely determined by its set of vertices.

These are equivalent, by taking geometric realizations or looking at vertex sets. We have the following operation:

Definition 1.2. Let X be a simplicial complex. The *barycentric subdivision* sd X has $V_{\text{sd } X} = S_X$, where $\{\sigma_0, \ldots, \sigma_n\}$ is a simplex if (in some ordering)

$$\sigma_0 \subsetneq \sigma_1 \subsetneq \cdots \subsetneq \sigma_n.$$

It is always true that X is homeomorphic to $\operatorname{sd} X$. A continuous map $f: X \to Y$ is *simplicial* if, for every simplex $\sigma \in X$, we have that $f(\sigma)$ is a simplex and $f|_{\sigma}$ is linear.

Requiring that maps are simplicial on the nose is quite restrictive: for example, we would like $\operatorname{Hom}(\partial \Delta^1, X)$ to be something like $\pi_1(X)$. However, we can only realize a path of length 3 by a simplicial map. To solve this, we say $f: X \to Y$ is a map of simplicial complexes if the induced map $f: \operatorname{sd}^k X \to \operatorname{sd}^\ell Y$ is simplicial.

Proposition 1.3. The functor $sCx \rightarrow hTop$ is full and essentially surjective.

Therefore, \mathbf{sCx} is a model of the homotopy category. The usual model is the category of CW complexes. The category \mathbf{sCx} has worse *categorical* properties, since products of simplicial complexes do *not* agree with the product in **Top**. However, the objects of \mathbf{sCx} are nicer to work with geometrically.

We begin defining some useful geometric constructions:

Definition 1.4. The *join* of A and B is

A * B = "Draw an edge from every point of A to every point of B"

$$= (V_A \cup V_B, \{\sigma * \tau \mid \sigma \in S_A, \tau \in S_B\})$$

$$\cong A \times B \times [0,1]/\{(a,b_1,0) \sim (a,b_2,0), (a_1,b,1) \sim (a_2,b,1)\}$$

$$\simeq \Sigma(A \wedge B) \quad \text{(pointing A,B arbitrarily)}.$$

Definition 1.5. Let $\sigma \in X$ be a k-simplex. Then, the star of σ is

$$\operatorname{st}(\sigma) = \left(\bigcup_{\sigma \leq \tau} \overline{\tau}\right) \subseteq X.$$

The link of σ is the complex $lk(\sigma)$ whose simplex set is $\{\tau \in S_X \mid \sigma \leq \tau\}$. (What is the vertex set?)

To relate these complexes, observe that $\operatorname{st}(\sigma) = \sigma * \operatorname{lk}(\sigma)$. Therefore, $\operatorname{st}(\sigma)$ is contractible, and $\operatorname{st}(\sigma) \setminus \mathring{\sigma} \simeq \Sigma^{\dim(\sigma)} \operatorname{lk}(\sigma)$.

Warning 1.6. $\operatorname{st}(\sigma)$ is not always a full subcomplex of X, i.e. there may be a simplex τ of X with $\partial \tau \in \operatorname{st}(\sigma)$ but $\tau \notin \operatorname{st}(\sigma)$. If this always holds, X is called a *flag complex*. Subdivisions are *always* flag complexes.

2. Bad Simplex Argument

We follow §2.1 of Hatcher–Vogtmann.

Let X be a simplicial complex, and Y be a subcomplex of X. We want to relate their homotopy types. Say that $S \subset S_X \setminus S_Y$ is a collection of bad simplices for X,Y if both of the following conditions hold.

(1) If σ has no faces in S, then $\sigma \in Y$.

(2) If two faces μ, τ of a simplex σ are bad, so is their internal join $\mu \cup \tau$.

Let $\sigma \in S$, and let

 $G_{\sigma} = \{ \tau \in \operatorname{lk}(\sigma) \mid \text{All bad faces of } \tau \text{ lie in } \sigma \}.$

Theorem 2.1. If, for all $\sigma \in S$, the complex G_{σ} is $(j - \dim(\sigma) - 1)$ -connected, then $\pi_i(X, Y) = 0$ for $i \leq j$.

Proof. Let $i \leq j$, and let $f: (D^i, S^{i-1}) \to (X, Y)$. Without loss of generality, f is simplicial with respect to some refinement of the standard triangulation of D^i . Let μ be a maximal simplex of D^i such that $\sigma = f(\mu)$ is bad. It follows by property (2) of S that $im(f|_{\mathrm{lk}(\mu)}) \subseteq G_{\sigma}$. Since we are using the standard triangulation of D^i , we have

$$lk(\mu) \cong S^{i-\dim(\mu)-1}.$$

Since G_{σ} is $(j - \dim(\sigma) - 1)$ -connected and $\dim(\sigma) \leq \dim(\mu)$, the map $f|_{\mathrm{lk}(\mu)}$ is nullhomotopic in G_{σ} .

First, we retriangulate $\operatorname{st}(\mu) \subset D^i$ as $C \operatorname{lk}(\mu) * \partial \mu$. Define g to agree with f off of the interior of $\operatorname{st}(\mu)$. To define the map on the interior of $\operatorname{st}(\mu)$, hang the nullhomotopy of $f|_{\operatorname{lk}(\mu)}$ off the cone $C \operatorname{lk}(\mu)$, and join the result over $f|_{\partial\mu}$. Since all modifications to f happen within the contractible $G_{\sigma} * \sigma$, we have $f \simeq g$. We have reduced the number of simplices of D^i mapping to bad simplices. Since D^i is compact, we can repeat the process until no bad simplices are in the image. By Property 1, the image of f lies in Y, as required.

Corollary 2.2. Let X, Y be as above, and let j be an integer so that the conditions of Theorem 2.1 are satisfied. Then,

$$\pi_i(Y) \cong \pi_i(X) \quad \text{for } i < j$$

$$\pi_j(Y) \twoheadrightarrow \pi_j(X).$$

Both of these are useful results!

3. Example: Maazen

Let \mathcal{B}_n be the complex whese vertices are unimodular vectors in \mathbb{Z}^n , and which has a k-simplex for every partial basis of size k + 1. Let $\mathcal{B}_n^m = \text{lk}(\{e_1, \ldots, e_m\})$.

Theorem 3.1 (Maazen). \mathcal{B}_n^m is (n-2)-connected.

This implies slope-1 homological stability for $SL_n(\mathbb{Z})$ (by Bernard–Miller–Sroka; Maazen found a worse range), $H^{\binom{n}{2}}(SL_n(\mathbb{Z});\mathbb{Q}) = 0$ (see Church–Farb–Putman), etc.

Proof (Church-Putman): Let X_N be the full subcomplex on those vertices with |Last coordinate| $\leq N$. The complex X_0 lies in the contractible st (e_{m+n}) . Any simplicial map $S^k \to \mathcal{B}_n^m$ lies in some X_N , by compactness of S^k . If we can show that (X_N, X_{N-1}) is k-connected for all N, then \mathcal{B}_n^m is k-connected.

We show this by a bad simplex argument. Let S be the set of simplices all of whose vertices have ||ast coordinate|| = N. If σ is such a simplex, then

$$G_{\sigma} = \operatorname{lk}^{< N}(\sigma) = \operatorname{lk}(\sigma) \cap X_{N-1}$$

We need to show that G_{σ} is $(n - \dim(\sigma) - 3)$ -connected. The full link is highly enough connected, by induction, since

$$\operatorname{lk}(\sigma) \cong \mathcal{B}_{n-\operatorname{dim}(\sigma)-1}^{m+\operatorname{dim}(\sigma)+1}.$$

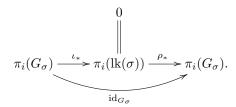
To show that G_{σ} carries the same connectivity, we construct a retraction:

Lemma 3.2. Let $\sigma \in S$, and choose $w \in \sigma$ with last coordinate $\pm N$. There is a retraction $\rho : \text{lk}(\sigma) \to G_{\sigma}$, defined on vertices by

$$\rho(v) = v \mp \left\lfloor \frac{v_{m+n}}{N} \right\rfloor w.$$

Exercise 3.3. Prove Lemma 3.2 by verifying that ρ extends over the simplices of $lk(\sigma)$.

Returning to the proof of Maazen's theorem, if $i \leq (n - \dim(\sigma) - 3)$, we have:



It follows that G_{σ} is $(n - \dim(\sigma) - 3)$ -connected, and therefore that (X_N, X_{N-1}) is (n-2)-connected. Therefore, \mathcal{B}_n^m is (n-2)-connected. \Box