LOCAL SYSTEMS IN SIMPLE HOMOTOPY THEORY

SACHA GOLDMAN

Contents

1.	Introduction	1
2.	Wall's Obstruction	1
3.	Local Systems.	2
4.	A Partial Proof of Wall's Theorem	3
5.	Whitehead's Torsion	3
Rei	ferences	4

1. INTRODUCTION

This talk will be about simple homotopy theory, the field that tries to answer the question: To what extent can homotopy theory be reduced to the geometry/combinatorics of finite CW-complexes. Our goal is to motivate a modern perspective on some classical objects of study in simple homotopy theory.

As a standing assumption, all spaces will be connected.

2. Wall's Obstruction

There are two very natural questions one could ask. A classical question:

Question 2.1. If Y is a finite CW-complex, and $r: Y \to X$ is a retract, i.e. there is a map $s: X \to Y$ such that $r \circ s \simeq id_X$, is X also a finite CW-complex? We call such an X finitely dominated.

And a modern question:

Question 2.2. Is the map $S^{fin} \to S^{\omega}$ (where ω denotes compact objects) an equivalence?

These are the same question. Being a compact object in spaces is the same as being homotopy equivalent to a finitely dominated CW-complex. These questions were answered in the negative by Wall, in the following way.

For a finitely dominated space X let $\widetilde{X} \to X$ be the universal cover of X. Then Wall associates to $C_{\bullet}(\widetilde{X})$ an element of $\widetilde{K}_0(\mathbb{Z}[\pi_1(X)])$ called $w(C_{\bullet}(\widetilde{X}))$ or just w(X). This process of taking w(X)should be thought of as "taking an alternating sum" and relies heavily on X being finitely dominated.

Theorem 2.3 (Wall [Wal65]). Suppose that X is finitely dominated. Then X is finite if and only if w(X) = 0. Further for element of $w \in \widetilde{K}_0(\mathbb{Z}[G])$ there is a finitely dominated space X with $\pi_1(X) = G$ and w(X) = w.

This w is called the *Wall finiteness obstruction*. The modern construction of this obstruction will look somewhat different. To begin, we modify where the obstruction will live.

$$K(\mathbb{Z}[\pi_1(X)]) \simeq_{\pi_0} K(H\mathbb{Z}[\Omega X]) \simeq_{\pi_0} K(\mathbb{S}[\Omega X]) \simeq K(\operatorname{Mod}_{\mathbb{S}[\Omega X]}^{\omega}).$$

SACHA GOLDMAN

Then using Schwede-Shipley [Lur17] 7.1.2.3 we know that $\operatorname{Mod}_{\mathbb{S}[\Omega X]} \simeq \operatorname{Fun}(X, \operatorname{Sp})$, this $\operatorname{Fun}(X, \operatorname{Sp})$ or Sp^X is what we call the category of local systems of spectra on X.

In the remainder of this talk, we will develop simple homotopy in $K((Sp^X)^{\omega})$.

3. LOCAL SYSTEMS.

The first notable thing about Sp^X is that it has a six-functor formalism. We will not describe the entirety of this formalism here, but some of the functors will play a roll. It is worth remarking that the six-functor formalism for local systems is especially good, for example every pushout square of spaces gives a Beck-Chevalley (base change) square.

Definition 3.1. Let \mathbb{S}_X denote the constant local system with value \mathbb{S} on X. Then $w(X) = [\mathbb{S}_X]$.

Before we proceed we need to make sure that \mathbb{S}_X is actually a compact object in \mathbb{Sp}^X . Let $\pi: X \to x$, then $\mathbb{S}_X = \pi^* \mathbb{S}$ where the upper star denotes the pullback for functor categories. So we want that π^* preserves compact objects. This is true by abstract nonsense whenever $\operatorname{fib}(\pi) \simeq X$ is compact in \mathbb{S} .

We will now prove a Mayer-Vietoris type result for S_X . For this week need some version of functoriality of $Sp^{[-]}$. The most natural choice is the pullback along a functor, but as we know this does not always preserve compact objects. This would also make $Sp^{[-]}$ contravariant, but we want it to be covariant (the functoriality of the group ring functor is covariant). For this reason, to a functor $f: X \to Y$ we assign the functor $f_1: Sp^X \to Sp^Y$, the left adjoint to f^* given by left Kan extension. This f_1 always preserves compact objects.

Theorem 3.2. Suppose that we have a pushout in S

$$\begin{array}{ccc} A & \longrightarrow & C \\ \downarrow & & \downarrow \\ B & \longrightarrow & D \end{array}$$

Let i_A , i_B , and i_C denote the maps from A, B, and C into D. Then the sequence

$$(i_A)_! \mathbb{S}_A \to (i_B)_! \mathbb{S}_B \oplus (i_C)_! \mathbb{S}_C \to \mathbb{S}_D$$

is exact in Sp^D .

Proof. The pushout gives a pushout in the over category $S_{/X}$. Lurie [Lur09] 3.2.0.1 shows that straightening map $S_{/X} \to \operatorname{Fun}(X, S)$ given by $(Y \xrightarrow{f} X) \mapsto f_{!*Y}$ is an equivalence. This equivalence takes our pushout in $S_{/D}$ to the pushout

$$(i_A)_{!}*_A \rightarrow (i_B)_{!}*_B + (i_C)_{!}*_C \rightarrow *_D$$

in Fun(D, S). Then by applying the functor Σ^{∞}_+ : Fun $(D, S) \to$ Fun(D, Sp) we get exactly the sequence we desire.

Before we move on to Wall's theorem we need one last thing.

Definition/Theorem 3.3. Let $X \in S^{\omega}$, let $\pi_X : X \to *$ be the terminal map. Then define $\chi_X = (\pi_X)_!(\mathbb{S}_X)$, then $[\chi_X]$ is the Euler characteristic of X.

Proof. To check this we can verify this on \emptyset , *, and the check on pushouts of spaces by applying the Sum theorem for K-theory to the exact sequence given by the theorem above.

4. A PARTIAL PROOF OF WALL'S THEOREM

Proof of Theorem 2.3. Suppose that $X \in S^{\text{fin}}$. We want to show that $[Sp^X]$ vanishes in the cofibre of the map $x_! : K((Sp^*)^{\omega}) \to K((Sp^X)^{\omega})$ where $x : * \to X$. To do this we can lift $[\mathbb{S}_X]$ along $x_!$. We will show that $[\chi(X)]$ is a lift for $[\mathbb{S}_X]$. Since X is finite it can be built by pushing out with a point finitely many times, i.e. it can be built from finitely many cells. We will "induct on cells".

To start, we remark that this is trivially true for a point.

Now suppose that we have a push out

$$\begin{array}{ccc} A & \longrightarrow & C \\ \downarrow & & \downarrow \\ B & \longrightarrow & D \end{array}$$

where we know that the Euler characteristic lifts the constant local system for A, B, and C. Let a, b, c, and d be basepoints for each space. We have that

$$[d_!\chi(B)] = [(i_B)!b_!\chi(B)] = [(i_B)!\mathbb{S}_B]$$

Then we know that

$$d_![\chi(D)] = [d_!\chi(B)] + [d_!\chi(C)] - [d_!\chi(A)]) = [(i_B)!\mathbb{S}_B] + [(i_C)!\mathbb{S}_C] - [(i_A)!\mathbb{S}_A] = \mathbb{S}_D.$$

The ease of these proofs did not depend on working in local systems of spectra, it came from working in the language of ∞ -categories. There are cases where we can use the power of the six-functor formalism for local systems to prove things about Wall's obstruction, but we derive our motivation for working in local systems from a different perspective.

5. WHITEHEAD'S TORSION

Definition 5.1. If X is a finite simplicial complex then a simple collapse of X looks like:

This yields a homotopy equivalent space X'. A simple expansion is the inverse.

Question 5.2. Is every homotopy equivalence $f : Y \to X$ homotopy equivalent to a finite number of simple expansions and collapses?

If f is homotopic to a finite number of simple expansions and collapses then f is called *simple*. This question was also answered in the negative by Whitehead. This time Whitehead assigned to f an element $\tau(f)$ in Wh($\pi_1(X)$) (some quotient of $K_1(\mathbb{Z}[\pi_1(X)])$). Whitehead then produces a theorem very similar to Wall¹.

Theorem 5.3 (Whitehead [Whi50]). Suppose that $f: Y \to X$ is a map finite simplicial complexes. Then f is simple if and only if $\tau(f) = 0$. Further for element of $\tau \in Wh(G)$ there is an equivalence $f: Z \to X$ with $\tau(f) = \tau$.

¹Although Whitehead was actually first.

SACHA GOLDMAN

We detail how $\tau(f)$ can be seen from the local systems perspective. It is worth remarking that the torsion of f depends explicitly on the simplicial structures for X and Y.

For the map which allowed us to understand Wall's obstruction

$$K(\operatorname{Sp}^*) \to K(\operatorname{Sp}^X)$$

to also allow us to understand Whitehead's torsion we need to upgrade to a map

$$K(\operatorname{Sp}^*) \otimes \Sigma^{\infty}_+ X \to K(\operatorname{Sp}^X)$$

This should've been the map we were using all along if we wanted to do Wall's obstruction for non-simply connected spaces. We give a brief definition of this map.

Definition 5.4. Define $A(X) = K(Sp^X)$, this is the *A*-theory of *X*. Writing $X \simeq \operatorname{colim}_X *$ we get a map

$$\operatorname{colim} A(*) \to A(\operatorname{colim} *)$$

or in other words, a map

$$\alpha_X : A(*) \otimes \Sigma^{\infty}_+ X \to A(X).$$

This $\alpha_{[-]}$ is a natural transformation of functors called *assembly*. We call the cofibre of assembly Wh(X) the *Whitehead spectrum* of X.

So for a space X Wall's obstruction is a point in the fibre. This allows us to define our analogue of a finite simplical structure.

Definition 5.5. A finiteness structure on X is a lift of the point \mathbb{S}_X in A(X) along the assembly map, i.e. a point $\ell_X \in A(*) \otimes \Sigma^{\infty}_+ X$ and a path $\varphi_X : \alpha_X(\ell_X) \to \mathbb{S}_X$.

This finally allows us to define the Whitehead torsion.

Definition 5.6. Suppose $f: X' \to X$ is an equivalence, and X and X' are given finiteness structures. Let $\varepsilon_f: f_! f^* \to \mathrm{id}$ be the counit of the adjunction $f_! \dashv f^*$. Then the composition

$$\alpha_X(f(\ell_{X'})) \xrightarrow[f_!(\varphi_{X'})]{f_!(\varphi_{X'})} f_! \mathbb{S}_Y \xrightarrow[\varepsilon_f]{\varepsilon_f} \mathbb{S}_X \xrightarrow[\varphi_X^{-1}]{\varepsilon_f} \alpha_X(\ell_X)$$

gives a loop in Wh(X) which we call τ_f the torsion of f.

References

- [Lur09] J. Lurie, Higher topos theory, Annals of Mathematics Studies, volume 170, Princeton University Press, Princeton, NJ, 2009.
- [Lur17] —, Higher algebra, 2017, unpublished. Available online at https://www.math.ias.edu/ ~lurie/. 2
- [Wal65] C. T. C. Wall, Finiteness conditions for cw-complexes, Annals of Mathematics, 81 (1965) (1), 56–69. 1
- [Whi50] J. H. C. Whitehead, Simple homotopy types, American Journal of Mathematics, 72 (1950) (1), 1–57. 3